一、氮化嫁(GaN)定義
氮化鎵材料定義:氮化鎵(GaN)主要是由人工合成的一種半導體材料,禁帶寬度大于2.3eV,也稱為寬禁帶半導體材料。
氮化鎵材料為第三代半導體材料的典型代表,是研制微電子器件、光電子器件的新型材料。
第一代半導體材料主要是指硅(Si)、鍺(Ge)半導體材料,興起于二十世紀五十年代,帶動了以集成電路為核心的微電子產業的快速發展,被廣泛的應用于消費電子、通信、光伏、軍事以及航空航天等多個領域。第二代半導體材料是以砷化鎵(GaAs)、銻化銦(InSb)為主的化合物半導體,其主要被用于制作高頻、高速以及大功率電子器件,在衛星通訊、移動 通訊以及光通訊等領域有較為廣泛的應用。砷化鎵和磷化銦半導體激光器成為 光通信系統中的關鍵器件,同時砷化鎵高速器件也開拓了光纖及移動通信的新產業。第三代半導體材料包括了以碳化硅(SiC)、氮化鎵(GaN)為代表的寬禁帶化合物半導體。第一二代半導體材料工藝已經逐漸接近物理極限,在微電子領域的摩爾定律開始逐步失效,而第三代半導體是可以超越摩爾定律的。相比于第一代及第二代半導體材料,第三代半導體材料在高溫、高耐壓以及承受大電流等多個方面具備明顯的優勢,因而更適合于制作高溫、高頻、抗輻射及大功率器件。在器件的性能對比上,GaN 材料以及 SiC 材料在通態電阻以及擊穿電壓方 面都具備較大的優勢。
第三代半導體材料應用可以分為微電子以及光電子領域,具體可以細分為 電力電子器件、微波射頻、可見光通信、太陽能、半導體照明、紫外光存儲、 激光顯示以及紫外探測器等領域,有望突破傳統半導體技術的瓶頸,與第一代、 第二代半導體技術互補,對節能減排、產業轉型升級、催生新的經濟增長點將發揮重要作用。氮化鎵最早是在1928年人工合成出來的材料。但它的單晶生長很難,目前氮化鎵襯底晶圓仍然偏貴。商業場景(LED/射頻RF/功率器件)中使用的多是異質外延片。氮化鎵器件所選用的襯底主要有Si、SiC、GaN、藍寶石等,在此基礎上進行氮化鎵的同質外延或異質外延。硅(或碳化硅)襯底上生長硅(或碳化硅)外延層,襯底和外延相同材質稱為同質外延;在硅(或藍寶石,碳化硅)襯底上生長氮化家外延層稱為異質外延。GaN單晶襯底是外延GaN最理想的襯底,缺陷密度低,外延材料質量好。但GaN單晶生長設備要求高,控制工藝復雜,位錯缺陷密度較高,良率較低,且相關技術發展較慢,GaN襯底片成本較高,應用受到限制。主流GaN襯底產品以2英寸為主,4英寸也已經實現商用。Si襯底成本低,GaN-on-Si生長速度較快,較容易擴展到8英寸晶圓;GaN-on-Si是硅基工藝,與CMOS工藝兼容性好,使GaN器件與CMOS工藝器件能很好地集成在一個芯片上,可以利用現有硅晶圓代工廠進行規模量產。GaN-on-Si外延片主要用于制造電力電子器件。2.1.3 碳化硅基氮化鎵(GaN-on-SiC)GaN-on-SiC結合了SiC優異的導熱性和GaN高功率密度、低損耗能力,襯底上的器件可在高電壓和高漏極電流下運行,結溫將隨RF功率緩慢升高,RF性能更好,目前多數GaN射頻器件的襯底都是SiC。受限于SiC襯底,目前尺寸仍然限制在4寸與6寸,8寸還沒有推廣。GaN-on-SiC外延片主要用于制造微波射頻器件。2.1.4 藍寶石基氮化鎵(GaN-on-sapphire)藍寶石襯底通常采用MOCVD法外延生長GaN,主流尺寸為4英寸,主要應用在LED市場。在GaN器件中,襯底的選擇對于器件性能起關鍵作用,襯底也占據了大部分成本,因而襯底是氮化鎵器件降低成本的突破口。目前市場上GaN晶體管主流的襯底材料為Si、SiC和藍寶石,GaN襯底由于工藝、成本問題尚未得到大規模商用。——在功率器件、射頻器件、顯示領域應用廣泛,支撐新基建快速發展支撐“新基建”建設的關鍵核心器件:氮化鎵是目前能同時實現高頻、高效、大功率代表性材料,下游應用切中“新基建”中 5G 基站、 特高壓、新能源充電樁、城際高鐵等主要領域高效電能轉換,助力“碳達峰,碳中和”目標實現:第三代半導體可助力實現光伏、風電(電能生產),直流特高壓輸電(電能傳輸),新能源汽車、工業電源、機車牽引、消費電源(電能使用)等領域的電能高效轉換,推動能源綠色低碳發展。GaN下游應用廣泛,主要有光電子領域、射頻電子領域和電力電子領域。轉載微信公眾號:半導體材料與工藝
聲明:本文版權歸原作者所有,轉發僅為更大范圍傳播學習,若有異議請聯系我們修改或刪除:market@cgbtek.com
聯系方式:
服務熱線/Service: 400-650-7658 86-13910297918
郵箱/Email :sales@cgbtek.com
公司網站/Website: http://www.sunzhun.cn
生產基地/Address: 河北省廊坊市香河機器人產業園3期A棟